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ABSTRACT

TO validate flight loads predictions, a modal test is
required to verify the structural dynamicmodelof a
spacecraft used in loads analyses. Traditionally, modal
testing o f shuttle payloads is performed with the payload
in its fixed-base configuration, i.e., constraining al the
payload /orb iter interface degrees of freedom. Practically,
the fixed boundary conditions are quite difficult to achieve
with large and massive payloads, such asthe Shuttle
Imaging Radar-C. This lcads to the consideration of testing
payloads in a free-free configuration, or other alternatives.
In this paper, it willbe shown analytically how free-frw
modes and residual flexibility data canbeadequateto
characterize the significant fixccl-base modes. As a result,
the fixed-base modes can be verified indirectly from the
measurcments of free-free modes and residual flexibility.

NOMENCLATURE

Mg physical mass matrix

K physical stiffness matrix

M, natural frequencies of fixed-base modes
Yys mass-normalized fixed-base modes shapes
@, natural frequencies of free-free modes

Gy mass-normatized free-free modes shapes
Iy, 1 identity matrix

I, crass-orthogonality

P sencialized coordinates of fice-free modes
q; gencralized coordinates of residual flexibility
ny; generalized mass of residual flexibility
19¥ residual flexibility shapes

f; forces atinterface degrees of freadom

My, constrainad mass matiix

oy constrained stiffness matrix

X, all physical coordinates of model

1. INTRODUCITON

To validate flight loads predictions, the fidelity of a
payload's structural dynamic modeclused in computing
ascent and landing loads needs to be verified.  The
verification process rcquires a moda survey test of the
physical structure and subsequent inodel correlation with
test data.

Traditionally, modal testing of a shuttle payload is
performed with the payload in its fixed-hasc configuration,
i o, constraining allthe payload/orbiter interface degrees
of frecedom. To properly achicve this set of boundary
conditions, the payload will be supporied on arigid fixture
which has no modes in the frequency range of intciest. The
fixture must be fixed to a reinforced floor for which
deformations do not interfere with the payload modos.
Also, the payload/fi xturc interface has to be identical, or
similar,to the payload/orbiterinterface. No gap or
friction is allowed since these will infroduce amplitude

dependent non-linearity.

Practically, in many cases, it is not possible to conducta
truly fixed-base test duce to coupling between the testariicle
and the fixture, especially with larg ¢ and massive
payloads, such as the Shuttle Imaging Radar-C (SIR-C). in
addition, it is oftendifficultto accurately simulate the
actual boundary constraints, and thecost of designing and
constructing the fixture may be prohibitive [1]. T his leads
to the consider ation of alter native modal test methodds,
including testing shuttle payloads in a  free-free
configuration using the residual flexibility techniaue (2,31
The residual flexibility appioach has been breated
1 lowever, ils

analytically in considerable deteil.

application as atestmethod is quite limited [4)5],

Ihafive-frec test, besidos measwing fico-fice mode . L the




payloact/orbiter interface region necds 10 be  test-veriiid
as well. ‘I"his can be done by exciting dircctly each of the
intetface attach degrees of freedom and extracting residual
flexibility mode shapes from the Frequency Response
Functions measured. The purpose of the present paper is to
show analytically how’ free-free modesand residual
flexibility data can bc adequate to characterize the
sig nificant fixed-base modes. Asa result, the fixed-base
modes can be verified indirectly from the measurements of
free-frcemodes and residual flexibilit y.

‘1'here arc two stepsinvolved in our matheinatical
approach for verifying constrained modes using free-free
modal test data. First, a set of target free-free modoes is
selected which will be correlated to test measurements.
Second, afree- free red uced model, using only selected target
modes and residual flexibility, is constrained
mathematically to generate fixed-base modes.  These
derived fixed-base modes are then compared to those
computed directly from the full finite clement model If the
resulting fimd-base frequencies and mode shapes agree, the
structural dynamic model is considered kst-verified inits
constrained configuration.

i n the following scctions, cach step of the proposed
mathematical approach is described in detail and the
governing equations are discussed. The method isthen
applied to the prc-test modcel of the SIR-C payload. A
comparison of the fixed-basL~ modes derived from free-free
"test” data and those from the full finite element mode] is

also presented.

2.SEL FECTION OF TARGE 1 I'REE-FREE MODIES
2.1 Mathematical Formulation

Consider a full finite clement model, described by a
physical mass matrix M,, anda stiffness matrix Kg,.

Assumc that the interface degices of freedom are not yet
Corldr.lined.

There are two seis of mode shapes of interest to the present

discussion. Frst, the free-fice modes of the system, which
we will denote dy, form a square invertible matrix with

the properlics

d’lgh'i“ d’gl:'lu; (n

Py K, by diag(o, ). (2)

Note that ¢ denotes the transposc of @y, The values o,

arc the free-flee natural frequencics of the structure,

Second, the fixed-krsc modes of the systein, which will
denote ¥y, , form arectangular matrix which is zero a the

inter [ace degrees of freedom, and for which

\{‘58 Mgg \VR“' = ]ss' (3)
Vg K pp Wge = diag(e]). )

The values w arc the fimd-base natural frequencies of the
structure. For both scts of modecs, o assume the full sct of
modes, even though all of the modes arc not usually
cor npuatad.

Because the matrix @y is square and invertible, it is
possible to express any vector x, as alincar combination
of the columns of dy. in parlicular, the fixed-base mode

shapes can be written as
\f'[;s s (I‘glllv/ 5)
for somematiixI'y. in fact, we can find an expression for

') by premultiplying equation (5) by dygM,,, and using
equation (1):

s O M, Wy, 6)

“i’bus, I',is simply the cross-orthogonality product

bet ween the free- free and fixed-base imodes of the structure,
Since both sets of modes shapes are mass-normalized,
clearly the values Ty must licbetween -1 and 1.

Referring back to equation (5), it can bescen that the
relative size of cach term of I, is an indication of the

importance of free-free mode I in describing fixed-base

mode s. Now premultiply equation (5) by Wy, M“,and

use equations (3) and (6) to simplify:

Is.t = lﬂ.\l‘ ‘Lr' )

Fxamining the diagonal terms of this equation, wo see that
the sum of the squares of the agoss-orthogonalily erms must

cqual unity; i, for fixed-base mode s,



=L (8)
!

Therefore, not only are the cross-orthogonality values
indicators of theimportance of free-free modes in
representing the fixed-base modes, but the sum of the
squares of the cross-orthogo nality terins for a given fixed-
base mode must be equal to 1. Thisistrue only if al of the
free-free modes are included in the sum. For any subset of
the free-freeinodes, the sum will be comething less than
unity.

This mathematical exercise leads to an approach for
determining target free free modes. The cross-orthogonality
matrix between free-free and fixwi-base modes is first
computed, then importance is assigned to each free-free
mode bawd on its relative contribution to the sum in
cquation (8). For any sclection of target free-free modes, the
partial sum over those modes is an indication of the
completeness of the set for desceribing any fixed-base mode,

2.2 Application to SIR-C

To illustrate the mathematical approachdescribed above,
the analysis performed to select a set of free-free target
modes for the SIR-C structure, using the pre-test model, is
desceribed herein.

The cross-orthog onality matrix 17, was computed for 188

fimi-base modes up t0 9013z, and 195 free-fl co modes up to
90 117z. For cach of the first 20 fixed-base modes (identified
as significant modes), the sum of equation (8) was computed
step by step as cach free-free mode was added to the sum.
The results are plotted in Figures 1a (fixed-base modes -
10) and 1b (modes 11-20). As predicted by the equation, the
total approaches 1. Although it is not obvious from these
figures, each of the first 28 free-free modes is significant to
at least one of the first 20 fixed-base modes. Beginning
with free-free mode number 29, the significance is much
smaller. The one exception is free-free mode number 62,
which is very significant for {ixed-base mode 20 (circles on

Fgure 1b).

Basced on this study, it was delermined that the target free-
frece modes should be modes | through 28, a nd mode 62,
Note thatthe first cleven freefl~'c modes arerigid body or
imternal inechanism modes, and can be considered to have
perfectly known mode shapes (determined only by
poometry). Ther efore, ther e are only 18 elastic target modes
(1kxIL's12 throuph 28 and mode 67).

In addition to thetarget free-free modes, the residual
flexibility mode shapes will be measured as well using the
Frequency Response Functions measured from direct
excitation of each of the interface attach degrecs of freedom.
Fachresidual flexibility mode shape’is a combination of all
of the non-target free-free modes.

Figure 2 shoows the total obtained in equation (8) when the
sum is taken over allof the target  free' -fr~>cn~odes]>I~Isthe
residual flexibility modes. Each fixdd-base mode has its
own result, which is between O and 1. This figure show
that the first 20 fixed-base modes are indeed almost
completely described by the target set. Figure 3shows the
sameresults, but plotted as a function of effective mass
rather than mode nunber, This figure demonstrates that all
of the modes with effective mass gl-cater than
approximately 3% of the totalmass are wellrepresented by
the target set together with residual flexibility.

3. COMPARISON OF FIXED-BASE MODES

The or thogonality coefficient study described in the
previous section is uscful for developing the set of target
free-free modes.  The results do not conclusively
demonstrate the adequacy of the target modes, however.,
This section describes the stepstaken to show that the free-
free model is equivalent to the tixwi-base model.

3,1 Mathematical Formulation

It \vas shown that a reduced cquation of motjon canbe
written using low-frequency free-free modes and residual
flexibility shapes! J. The reduced equation of motion in

modal coordinates s

I, 0 B diag(®, 0| P d’zi’r
0 inu 4; 0 R 9] [Ra

i

where p, the generalized ecoordinates of fice-free mnodes,
the generalized coordinates of residuval flexibility shapes,
@, the natural frequencics of fiee-free modes, f; the forces
at interface degrees of freedom, 1, is an idontity matrix,
m; the generalized mass of residual fleaibility shapes, R,
the partition of the residual flexibility matiix R, at the
interface degrees of freedom, @y the patition of the fice-

frozinodes @ atthe intedace dogrees of frendom,




Physical coordinates, Xg,are then obtained from modal
coordinates by the equation

(10)

i

To establish arelationship between the free-free model and
a fixrd-base model, we will use equations (9) and (10) to
predict fixed-base modes. Fromequation (10) we can
express displacements at the interface degrees of freedom as

xp= (@ RH (11)

Constrain the interface by setting x;:= O. One way to

enforce this constraint is by eliminating the residual
flexibility coordinates. This requires

;= - Ry dypy. (12)

Substituting this equation into equation (9), we obtain the
constrained equation of motion:

My, Rupl =0, (13)

where
My = 1y 4 DR my RO (14.1)
Ky = diag(c] )4 @, R, D, (14.2)

These 'constrained” mass and stiffness matrices are no
longer diagonal. In the constrained model, physical
displacements are obtained as

Xg

"

Doypy Rgiqi (15)

(®,- Rg‘-R}'«l(D”)p,. (16)

The fixed-base mode shapes diagonalize the constrained
mass and stiffness matrices. Tet @, be a square matiix for

which
(PJII&I{(PL\' = ]s.c; (]7])

@ K @y, = diag(m]). (17.2)

This matrix is obtained by solving the cigenvalue problem
for M, am-i K ;. Then the fixed-base frequencies predicted
by constraining the free-free model arc o, Further, the

predicted fixed-base mode shape's at physical degrees of

freedom, ¥, , are obtained by applying equation (J 6):

&’
\l’gs :(d)gl' Rgin:ild)il)(pls' (18)

Note that the constrained mass and stiffness matrices
depend only on the interface partition Ry; of the residual
flexibility matrix. The residual flexibility at other degrees
o { freedom in the model does not affect these matrices, and
hence has noinfluence onthe predicted fixed-base natural
frequencies, The predict ed mode shape, however, depends
onthefullresidual flexibility shape, as sewn in equation
(18).

3.2 Application to SIR-C

The previously outlined approach was applied to the pre-
test SIR-C model. The free-free model used all of the target
free-free modes (modes 1-28 and mode 62), supplemented
with the residual flexibility mode shapes {or the twelve
interface degrees of frecdom,

The fixed-base modes computed from the free-free model
were compared with the fixed-base modes computed from
the full finite element model. The two sets of modes were
compared in two ways. The natural frequencies are
compared in Table 1. The table shows that for all of the
significant fixed-base modes (i.c., modes 1 through 20), the
frequencics agree within approximately 1%. Mode shape
comparison is shown in Table 2, which shows cross-
orthogonality between the fixed-base mode shapes
computed from the full model, compared with those
computed from the free-free modal model. The rows of
Table 2 correspond to the modes of the full model, and the
columns to the modes derived from the fice-free modal
model. With two exceptions, all of the off=diagonal terms in
the first 20 modes are less 10%. ‘The exceptions are mode
pairs 2 and 3 and 14 and 15, which show off-diagonal
terms of 12% and 15% respectively. Ireeach case, the pairs
of modes have frequencics within a couple of peicent, and
the off-diagonal terins mercly represent a small "rotation”
of the mode peir. This is a common phenomenon with
closely spaced modes, and doeces not invalidate the result,

Note also that modes 19 and 20 traded places, but the



frequency shiftis quite small.

Bascd on the above results, it is demonstrated that the
sclected target fme-free modes plus residual flexibility will
be sufficient to predicithe first 20 fixed-base modes up to
25z range.

4. CONCL.USIONS

An analytical approach was developed to demonstrate the
mathematical basis for verifying constrained modes using
free-fl cc modal test data. There arc two steps involved in
this approach. First, a set of targcet free-free modes is
selected based on the cross-orthogonality matr ix bet ween
free-frec and fixed-base modes. For any selection of target
free-free modes, the completeness of theset for describing
any fixed-base mode is checked. Second, the free-frm
reduced analytical model, using only selected target modces
and residual flexibility, is constrained mathematically to
generate fixed-base modes. These derived fixed-baw modes
are then compared to those computed directly from the full
finite clement model.

This approach was applied to the prc-test model of the
SIR-C shuttle payload. Theresults showed a good
prediction of the first20 fixed-base modes upto 2511z
range using 29 target free-free modes plus12 residual
flexibility shapes. This indicates that the free-frm modal
represcentation of the structure is equivalent to thefixed -
base representation of the model for the significant fixed-
basc modes up to 25 1z range. So, by measuring and
correlating the target free-free modes and residual
fiexibility, we should have a high degree o f confidence in
the fixcxl-base miodes of the conelated model.
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